
NL - Web API v7 Implementation Documentation Overview

Web API v7 Implementatie Documentatie

Inhoudsopgave

Web API v7 Implementatie Documentatie

Inhoudsopgave

1. Introductie

2. Installatiehandleiding

3. Getting Started - Je Eerste API Call

4. Authenticatie & Beveiliging

5. API Endpoints & Functionaliteit

6. Productsheet Functionaliteit

7. Updates & Synchronisatie

8. Master Data Management

9. Assortimentslijsten

10. Webhooks

11. Error Handling

12. Best Practices

13. Ondersteuning

Appendix

1. Introductie

Overzicht van de Software

De Web API versie 7 vertegenwoordigt een nieuw ontworpen online applicatie die het mogelijk maakt om

geautomatiseerde productspecificaties op te halen en in te dienen. Deze versie introduceert belangrijke

verbeteringen en nieuwe functionaliteiten:

Ondersteuning voor zowel XML als JSON formaten

Verbeterde performantie en schaalbaarheid

Uitgebreide validatie mogelijkheden

Geoptimaliseerde data-uitwisseling

Doelgroep

Deze documentatie is specifiek samengesteld voor:

Producenten en groothandels die de API willen implementeren

Afnemers die geautomatiseerde toegang tot productinformatie nodig hebben

Technische teams verantwoordelijk voor de integratie

Ontwikkelaars die de API gaan implementeren

2. Installatiehandleiding

Systeemvereisten

Voor gebruik van de Web API zijn de volgende minimale vereisten van toepassing:

Een betrouwbare en stabiele internetverbinding

Kennis van Endpoints en authenticatie afhandeling

Toegang tot de specifieke URL of netwerk adres

Geldige authenticatie gegevens

Basisinstellingen

1. Toegang tot de API omgeving verkrijgen via PS

2. Authenticatie gegevens configureren

3. Basis endpoints testen

4. Implementatie van error handling

3. Getting Started - Je Eerste API Call

Deze sectie leidt je stap-voor-stap door het proces van je eerste API call, van authenticatie tot het ophalen van een

product. Ideaal voor ontwikkelaars die meteen aan de slag willen.

Wat heb je nodig?

Voordat je begint, zorg ervoor dat je het volgende hebt:

API Base URL: <https://webapi.psinfoodservice.com >

Gebruikersnaam: Ontvangen van PS in Foodservice

Wachtwoord: Ontvangen van PS in Foodservice

Product ID: Een geldige productsheet ID (psId) waartoe je toegang hebt

HTTP client: cURL, Postman, of programmeercode in je favoriete taal

Stap 1: Inloggen en Token Verkrijgen

Om de API te kunnen gebruiken, heb je eerst een JWT token nodig. Dit token gebruik je voor alle verdere API calls.

Endpoint

Request Headers

Request Body

Response Success - 200 OK

Belangrijk:

De accesstoken is geldig voor het aantal seconden aangegeven in expiresin (standaard 3600

seconden = 1 uur)

Bewaar de refreshtoken veilig - deze kun je gebruiken om een nieuw accesstoken aan te vragen zonder

opnieuw in te loggen

Bewaar tokens nooit in broncode of publieke repositories

Stap 2: Product Ophalen met Token

Nu je een token hebt, kun je productinformatie ophalen.

Endpoint

1 POST https://webapi.psinfoodservice.com/v7/json/account/login

1 Content-Type: application/json

1 {
2 "username": "jouw_gebruikersnaam",
3 "password": "jouw_wachtwoord"
4 }

1 {
2 "accesstoken": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
3 "refreshtoken": "a8d9f7e6c5b4a3d2e1f0...",
4 "expiresin": 3600

5 }

of met specifieke taal:

Parameters:

{psId} : Product ID (bijvoorbeeld: 1234567)

{language} : (optioneel) Taalcode: nl , en , de , of fr

Request Headers

Response Success - 200 OK

Volledige Voorbeelden in Verschillende Talen

cURL (Command Line)

Stap 1: Login

Stap 2: Product ophalen

C# (.NET 6+)

1 GET https://webapi.psinfoodservice.com/v7/json/productsheet/{psId}

1 GET
https://webapi.psinfoodservice.com/v7/json/productsheet/{language}/{psI
d}

1 Authorization: Bearer {jouw_accesstoken}
2 Content-Type: application/json

1 {
2 "logistic": {
3 "psId": 1234567,
4 "gtince": "8712345678901",
5 "gtinhe": "18712345678908",
6 "productName": "Voorbeeld Product",
7 ...
8 },
9 "product": {
10 "articleNumber": "ART12345",
11 "brand": "Voorbeeld Merk",
12 ...
13 },
14 "specification": {
15 ...
16 }
17 }

1 curl -X POST https://webapi.psinfoodservice.com/v7/json/account/login \
2 -H "Content-Type: application/json" \
3 -d '{
4 "username": "jouw_gebruikersnaam",
5 "password": "jouw_wachtwoord"
6 }'

1 # Vervang {TOKEN} met de accesstoken uit stap 1
2 curl -X GET

https://webapi.psinfoodservice.com/v7/json/productsheet/1234567 \
3 -H "Authorization: Bearer {TOKEN}" \
4 -H "Content-Type: application/json"

1 using System;
2 using System.Net.Http;
3 using System.Net.Http.Headers;
4 using System.Net.Http.Json;
5 using System.Threading.Tasks;
6

7 public class Program

8 {
9 private static readonly HttpClient client = new HttpClient();
10 private const string BaseUrl =

"https://webapi.psinfoodservice.com/v7/json";
11

12 public static async Task Main(string[] args)
13 {
14 try

15 {
16 // Stap 1: Login en token verkrijgen
17 var loginData = new

18 {

JavaScript/Node.js (met fetch)

19 username = "jouw_gebruikersnaam",
20 password = "jouw_wachtwoord"
21 };
22

23 var loginResponse = await client.PostAsJsonAsync(
24 $"{BaseUrl}/account/login",
25 loginData
26);
27

28 loginResponse.EnsureSuccessStatusCode();
29

30 var tokenResponse = await

loginResponse.Content.ReadFromJsonAsync<TokenResponse>();
31 Console.WriteLine($"Token verkregen, geldig voor

{tokenResponse.ExpiresIn} seconden");
32

33 // Stap 2: Product ophalen met token
34 client.DefaultRequestHeaders.Authorization =
35 new AuthenticationHeaderValue("Bearer",

tokenResponse.AccessToken);
36

37 int productId = 1234567;
38 var productResponse = await client.GetAsync(
39 $"{BaseUrl}/productsheet/{productId}"
40);
41

42 productResponse.EnsureSuccessStatusCode();
43

44 var productSheet = await

productResponse.Content.ReadAsStringAsync();
45 Console.WriteLine("Product opgehaald:");
46 Console.WriteLine(productSheet);
47 }
48 catch (HttpRequestException e)
49 {
50 Console.WriteLine($"Request fout: {e.Message}");
51 }
52 }
53 }
54

55 // DTOs
56 public class TokenResponse

57 {
58 public string AccessToken { get; set; }
59 public string RefreshToken { get; set; }
60 public int ExpiresIn { get; set; }
61 }

1 const baseUrl = 'https://webapi.psinfoodservice.com/v7/json';
2

3 async function getProduct() {
4 try {
5 // Stap 1: Login en token verkrijgen
6 const loginResponse = await fetch(`${baseUrl}/account/login`, {
7 method: 'POST',
8 headers: {
9 'Content-Type': 'application/json',
10 },
11 body: JSON.stringify({
12 username: 'jouw_gebruikersnaam',
13 password: 'jouw_wachtwoord'
14 })
15 });
16

17 if (!loginResponse.ok) {
18 throw new Error(`Login failed: ${loginResponse.status}`);
19 }
20

21 const tokenData = await loginResponse.json();
22 console.log(`Token verkregen, geldig voor ${tokenData.expiresin}

seconden`);
23

24 // Stap 2: Product ophalen met token
25 const productId = 1234567;
26 const productResponse = await fetch(
27 `${baseUrl}/productsheet/${productId}`,
28 {
29 method: 'GET',
30 headers: {
31 'Authorization': `Bearer ${tokenData.accesstoken}`,
32 'Content-Type': 'application/json'
33 }
34 }
35);
36

37 if (!productResponse.ok) {

Python (met requests library)

PHP

38 throw new Error(`Product ophalen mislukt:
${productResponse.status}`);

39 }
40

41 const productData = await productResponse.json();
42 console.log('Product opgehaald:', productData);
43

44 return productData;
45

46 } catch (error) {
47 console.error('Fout:', error.message);
48 throw error;
49 }
50 }
51

52 // Uitvoeren
53 getProduct();

1 import requests
2 import json
3

4 BASE_URL = "https://webapi.psinfoodservice.com/v7/json"
5

6 def get_product():
7 try:
8 # Stap 1: Login en token verkrijgen
9 login_data = {
10 "username": "jouw_gebruikersnaam",
11 "password": "jouw_wachtwoord"
12 }
13

14 login_response = requests.post(
15 f"{BASE_URL}/account/login",
16 json=login_data,
17 headers={"Content-Type": "application/json"}
18)
19

20 login_response.raise_for_status()
21 token_data = login_response.json()
22

23 access_token = token_data["accesstoken"]
24 print(f"Token verkregen, geldig voor {token_data['expiresin']}

seconden")
25

26 # Stap 2: Product ophalen met token
27 product_id = 1234567

28 headers = {
29 "Authorization": f"Bearer {access_token}",
30 "Content-Type": "application/json"
31 }
32

33 product_response = requests.get(
34 f"{BASE_URL}/productsheet/{product_id}",
35 headers=headers
36)
37

38 product_response.raise_for_status()
39 product_data = product_response.json()
40

41 print("Product opgehaald:")
42 print(json.dumps(product_data, indent=2))
43

44 return product_data
45

46 except requests.exceptions.RequestException as e:
47 print(f"Fout: {e}")
48 raise

49

50 # Uitvoeren
51 if __name__ == "__main__":
52 get_product()

1 <?php

2

3 $baseUrl = "https://webapi.psinfoodservice.com/v7/json";
4

5 function getProduct() {
6 global $baseUrl;
7

8 try {
9 // Stap 1: Login en token verkrijgen
10 $loginData = [
11 'username' => 'jouw_gebruikersnaam',
12 'password' => 'jouw_wachtwoord'

XML Format Gebruiken

Als je XML formaat wilt gebruiken in plaats van JSON, vervang dan /json/ door /xml/ in de URLs:

Login (XML):

Product ophalen (XML):

Let op: De request body voor login blijft JSON, maar de response zal in XML formaat zijn.

13];
14

15 $loginOptions = [
16 'http' => [
17 'method' => 'POST',
18 'header' => 'Content-Type: application/json',
19 'content' => json_encode($loginData)
20]
21];
22

23 $loginContext = stream_context_create($loginOptions);
24 $loginResponse = file_get_contents(
25 "$baseUrl/account/login",
26 false,
27 $loginContext
28);
29

30 if ($loginResponse === false) {
31 throw new Exception("Login failed");
32 }
33

34 $tokenData = json_decode($loginResponse, true);
35 $accessToken = $tokenData['accesstoken'];
36

37 echo "Token verkregen, geldig voor {$tokenData['expiresin']}
seconden\n";

38

39 // Stap 2: Product ophalen met token
40 $productId = 1234567;
41

42 $productOptions = [
43 'http' => [
44 'method' => 'GET',
45 'header' => "Authorization: Bearer $accessToken\r\n" .
46 "Content-Type: application/json"
47]
48];
49

50 $productContext = stream_context_create($productOptions);
51 $productResponse = file_get_contents(
52 "$baseUrl/productsheet/$productId",
53 false,
54 $productContext
55);
56

57 if ($productResponse === false) {
58 throw new Exception("Product ophalen mislukt");
59 }
60

61 $productData = json_decode($productResponse, true);
62

63 echo "Product opgehaald:\n";
64 echo json_encode($productData, JSON_PRETTY_PRINT) . "\n";
65

66 return $productData;
67

68 } catch (Exception $e) {
69 echo "Fout: " . $e->getMessage() . "\n";
70 throw $e;
71 }
72 }
73

74 // Uitvoeren
75 getProduct();
76

77 ?>

1 POST https://webapi.psinfoodservice.com/v7/xml/account/login
2 Content-Type: application/json

1 GET https://webapi.psinfoodservice.com/v7/xml/productsheet/1234567
2 Authorization: Bearer {token}

Token Vernieuwen (Refresh Token)

Wanneer je accesstoken bijna verlopen is, kun je een nieuw token aanvragen zonder opnieuw in te loggen:

Endpoint

Request Body

Response

Troubleshooting

Probleem: 401 Unauthorized bij login

Mogelijke oorzaken:

Incorrecte gebruikersnaam of wachtwoord

IP adres is geblokkeerd na meerdere foutieve login pogingen (24 uur blokkade)

Account is niet actief

Oplossing:

Controleer je credentials

Wacht 24 uur als je IP geblokkeerd is

Neem contact op met support:

Probleem: 401 Unauthorized bij product ophalen

Mogelijke oorzaken:

Token is verlopen

Token is niet correct opgenomen in de Authorization header

Formaat van de Authorization header is incorrect

Oplossing:

Probleem: 403 Forbidden bij product ophalen

Mogelijke oorzaken:

Je hebt geen toegang tot dit specifieke product

Product ID bestaat niet

Je account heeft niet de juiste permissies

Oplossing:

Controleer of het product ID correct is

Controleer of je account toegang heeft tot dit product

Neem contact op met support voor toegangsvragen

1 POST https://webapi.psinfoodservice.com/v7/json/account/refreshtoken

1 {
2 "accessToken": "je_huidige_accesstoken",
3 "refreshToken": "je_refreshtoken"
4 }

1 {
2 "accesstoken": "nieuw_accesstoken",
3 "refreshtoken": "nieuw_refreshtoken",
4 "expiresin": 3600

5 }

info@psinfoodservice.com

1 # Correcte format:
2 Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...
3

4 # NIET:
5 Authorization: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...

mailto:info@psinfoodservice.com

Probleem: 404 Not Found

Mogelijke oorzaken:

Product bestaat niet in het systeem

Verkeerd endpoint gebruikt

Type fout in URL

Oplossing:

Controleer de URL spelling

Verifieer dat het product ID bestaat

Controleer de API documentatie voor correcte endpoints

Probleem: 400 Bad Request

Mogelijke oorzaken:

Ongeldige JSON in request body

Missende verplichte velden

Verkeerde data types

Ongeldige taalcode (moet zijn: nl, en, de, of fr)

Oplossing:

Best Practices voor Getting Started

1 // Correct login request:
2 {
3 "username": "string",
4 "password": "string"
5 }
6

7 // Incorrecte voorbeelden (geen lege strings toegestaan):
8 {
9 "username": "",
10 "password": "test"
11 }

1. Token Management

Sla tokens veilig op (bijv. environment variables, secure storage)

Implementeer token refresh logic voor verlopen tokens

Log tokens NOOIT in console of log bestanden

2. Error Handling

Implementeer try-catch blokken voor alle API calls

Handle verschillende HTTP status codes afzonderlijk

Log errors voor debugging, maar zonder gevoelige informatie

3. Testing

Test eerst met Postman of cURL voordat je code schrijft

Gebruik de Swagger documentatie voor endpoint details

Test zowel success als error scenarios

4. Rate Limiting

De API heeft rate limiting per endpoint

Implementeer exponential backoff bij rate limit errors

Cache resultaten waar mogelijk

5. Productie Deployment

Gebruik HTTPS altijd (nooit HTTP)

Bewaar credentials in omgevingsvariabelen

Implementeer logging en monitoring

Test grondig in staging omgeving

Volgende Stappen

Nu je je eerste API call succesvol hebt uitgevoerd, kun je verder met:

Sectie 5: Leer meer over alle beschikbare endpoints

Sectie 6: Ontdek productsheet functionaliteit in detail

Sectie 9: Implementeer assortimentslijsten

Sectie 10: Configureer webhooks voor real-time notificaties

Sectie 12: Best practices voor productie gebruik

Voor meer gedetailleerde informatie over specifieke endpoints, zie de Swagger documentatie:

4. Authenticatie & Beveiliging

Authenticatie Flow

Het authenticatie proces verloopt via de volgende stappen:

1. Login met gebruikersnaam/wachtwoord

2. Ontvangst van JWT token

3. Token gebruiken voor vervolg aanroepen

Autorisatie token

Tokens bevatten de volgende informatie:

Gebruikersidentiteit

Machtigingen

Geldigheidsduur

Belangrijk: Tokens hebben een beperkte geldigheidsduur en moeten worden vernieuwd via het authenticatie proces.

5. API Endpoints & Functionaliteit

Beschikbare Endpoints

Basis URL structuur:

Waar:

{format} = 'json' of 'xml'

{endpoint} = specifieke functionaliteit

{parameters} = aanvullende parameters

Belangrijke Endpoints

Productsheet

Master Data

Updates

Mijn Producten

Data Formaten

XML Formaat

Swagger UI

1 https://webapi.psinfoodservice.com/v7/{format}/{endpoint}/{parameters}

1 GET /ProductSheet/{id}
2 GET /ProductSheet/{language}/{id}

1 GET /master/all
2 GET /master/{type}

1 POST /Update/EAN

1 GET /myproducts

1 <?xml version="1.0" encoding="UTF-8"?>

2 <root>
3 <logistic>

https://webapi.psinfoodservice.com/swagger/index.html

JSON Formaat

Request & Response Voorbeelden

Updates Controleren

Request:

Response:

6. Productsheet Functionaliteit

Structuur

De productsheet bestaat uit drie hoofdsecties:

1. Logistiek gedeelte (verplicht)

Verpakkingsgegevens

Logistieke informatie

2. Productgedeelte (verplicht)

Algemene productgegevens

Productidentificatie

3. Specificatiegedeelte (optioneel)

Food/Non-food specifieke gegevens

Aanvullende productinformatie

4 <!-- Logistieke gegevens -->
5 </logistic>
6 <product>
7 <!-- Algemene productgegevens -->
8 </product>
9 <specification>
10 <!-- Product specificaties (optioneel) -->
11 </specification>
12 </root>

1 {
2 "logistic": {
3 // Logistieke gegevens
4 },
5 "product": {
6 // Algemene productgegevens
7 },
8 "specification": {
9 // Product specificaties (optioneel)
10 }
11 }

1 {
2 "searchCriteria": [
3 "87000000000",
4 "87000000001",
5 "87000000002"
6],
7 "lastUpdatedAfter": "2023-12-22",
8 "isPrivateLabel": true,
9 "isPubliclyVisible": true,
10 "targetMarket": "All"
11 }

1 [
2 {
3 "LogisticId": 1690881,
4 "TargetMarketId": 1,
5 "LastChanged": "2023-08-24T12:53:24.823"
6 }
7]

Taalondersteuning

Standaard: alle beschikbare talen

Specifieke taal via URL parameter

Vertaalde velden via masterlijsten

Output Opties

all: complete productinformatie

summary: beknopte samenvatting

productcontent: alleen productinhoud

logistics: alleen logistieke gegevens

7. Updates & Synchronisatie

Updates Controleren

Het update proces omvat:

1. Controle op wijzigingen sinds datum

2. Vergelijking met bestaande data

3. Verwerking van verschillen

4. Terugkoppeling resultaten

Data Insturen

Bij het insturen van data wordt het volgende gecontroleerd:

Validiteit van de data

Referentiële integriteit

Verplichte velden

Datatype correctheid

Validatie Proces

1. Syntactische validatie

2. Semantische validatie

3. Business rules validatie

4. Master data referentie controle

8. Master Data Management

Beschikbare Masterlijsten

Eenheden

Allergenen

Landen

Vertalingen

Verpakkingsmaterialen

Aanvullende productdetails

Gebruik en Implementatie

1. Ophalen van masterlijsten

2. Implementatie van updates

3. Verwerking in eigen systeem

4. Synchronisatie strategie

Caching Strategie

Implementeer lokale cache

Regelmatige updates

Versie controle

Cache invalidatie

9. Assortimentslijsten

Doel en Functionaliteit

Assortimentslijsten maken het mogelijk om:

Producten te koppelen aan afnemers

Assortiment te beheren

Relaties te leggen tussen leveranciers en afnemers

Artikelen gestructureerd te beheren in categorieën

Klanten kunnen meerdere assortimentslijsten aanmaken en beheren, artikelen toevoegen en verwijderen, en

assortimenten opvragen en bekijken.

API Endpoints

Alle assortimentslijsten endpoints vereisen authenticatie met JWT token en de Read rol. De endpoints filteren

automatisch op basis van de RelationId uit het token.

9.1 POST /v7/{format}/Assortment/assortments

Een nieuwe assortimentslijst aanmaken

Maakt een nieuwe assortimentslijst aan met optioneel items. Controleert eerst of er nog beschikbare lijsten zijn voor

de relatie.

Parameters:

{format} : Responseformaat (json/xml)

Request Body:

Response Codes:

200 OK: Assortimentslijst succesvol aangemaakt

400 Bad Request: Ongeldige input data

409 Conflict: "No available lists" - geen beschikbare lijsten meer

1 {
2 "id": "guid",
3 "name": "string (verplicht)",
4 "assortmentTypeId": "int (verplicht, > 0)",
5 "items": [
6 {
7 "id": 0,
8 "articleNumber": "string",
9 "articleName": "string",
10 "articleBrand": "string",
11 "gtince": "string",
12 "gtinhe": "string",
13 "relationGln": "string",
14 "relationName": "string",
15 "relationArticleNumber": "string"
16 }
17]
18 }

Implementatie Details:

Controller: AssortmentController.Assortments() (regel 57-75)

Use Case: ISetAssortmentUseCase

Request Size Limit: 100 MB

9.2 GET /v7/{format}/Assortment/assortments

Alle assortimentslijsten ophalen

Haalt alle assortimentslijsten op die horen bij de ingelogde relatie, inclusief alle items per lijst.

Parameters:

{format} : Responseformaat (json/xml)

Response Body:

Response Codes:

200 OK: Lijst met assortimenten

204 No Content: Geen assortimenten gevonden

Implementatie Details:

Controller: AssortmentController.GetAssortmentLists() (regel 157-167)

Use Case: IGetAssortmentListsUseCase

9.3 PUT /v7/{format}/Assortment/assortments/items

Items toevoegen aan een assortimentslijst

Voegt nieuwe items toe aan een bestaande assortimentslijst. Bestaande items blijven behouden.

Parameters:

{format} : Responseformaat (json/xml)

Request Body:

1 [
2 {
3 "id": "guid",
4 "name": "string",
5 "assortmentType": {
6 "id": 0,
7 "name": [
8 {
9 "language": "string",
10 "value": "string"
11 }
12]
13 },
14 "items": [
15 {
16 "id": 0,
17 "articleNumber": "string",
18 "articleName": "string",
19 "articleBrand": "string",
20 "gtince": "string",
21 "gtinhe": "string",
22 "relationGln": "string",
23 "relationName": "string",
24 "relationArticleNumber": "string"
25 }
26]
27 }
28]

1 {
2 "id": "guid (verplicht)",
3 "items": [
4 {

Response Codes:

200 OK: Items succesvol toegevoegd

400 Bad Request: Ongeldige input data

409 Conflict: "Geen assortimentslijst met de Id {id} gevonden."

Implementatie Details:

Controller: AssortmentController.AddAssortmentItems() (regel 81-99)

Use Case: IAddAssortmentItemsUseCase

Request Size Limit: 100 MB

9.4 DELETE /v7/{format}/Assortment/assortments/{id}/items

Items verwijderen uit een assortimentslijst

Verwijdert specifieke items uit een bestaande assortimentslijst. De lijst zelf blijft bestaan.

Parameters:

{format} : Responseformaat (json/xml)

{id} : GUID van de assortimentslijst (route parameter, verplicht)

Request Body:

Response Codes:

200 OK: Items succesvol verwijderd

400 Bad Request: Ongeldige input data

409 Conflict: "Geen assortimentslijst met de naam {name} gevonden."

Implementatie Details:

Controller: AssortmentController.RemoveAssortmentItems() (regel 104-126)

Use Case: IRemoveAssortmentItemsUseCase

9.5 GET /v7/{format}/Assortment/assortments/{id}/items

Een specifieke assortimentslijst ophalen

5 "id": 0,
6 "articleNumber": "string",
7 "articleName": "string",
8 "articleBrand": "string",
9 "gtince": "string",
10 "gtinhe": "string",
11 "relationGln": "string",
12 "relationName": "string",
13 "relationArticleNumber": "string"
14 }
15]
16 }

1 {
2 "id": "guid",
3 "items": [
4 {
5 "id": 0,
6 "articleNumber": "string",
7 "articleName": "string",
8 "articleBrand": "string",
9 "gtince": "string",
10 "gtinhe": "string",
11 "relationGln": "string",
12 "relationName": "string",
13 "relationArticleNumber": "string"
14 }
15]
16 }

Haalt een specifieke assortimentslijst op inclusief alle items en metadata.

Parameters:

{format} : Responseformaat (json/xml)

{id} : GUID van de assortimentslijst (verplicht)

Response Body:

Response Codes:

200 OK: Assortimentslijst gevonden

204 No Content: Geen assortimentslijst gevonden met dit ID

Implementatie Details:

Controller: AssortmentController.GetAssortmentList() (regel 141-152)

Use Case: IGetAssortmentUseCase

9.6 DELETE /v7/{format}/Assortment/assortment/{id}

Een volledige assortimentslijst verwijderen

Verwijdert een volledige assortimentslijst inclusief alle items permanent.

Parameters:

{format} : Responseformaat (json/xml)

{id} : GUID van de assortimentslijst (verplicht)

Response Codes:

200 OK: Assortimentslijst succesvol verwijderd

400 Bad Request: Ongeldig ID

401 Unauthorized: Niet geautoriseerd

403 Forbidden: Geen toegang tot deze lijst

Implementatie Details:

Controller: AssortmentController.RemoveAssortment() (regel 131-136)

Use Case: IRemoveAssortmentUseCase

1 {
2 "id": "guid",
3 "name": "string",
4 "assortmentType": {
5 "id": 0,
6 "name": [
7 {
8 "language": "string",
9 "value": "string"
10 }
11]
12 },
13 "items": [
14 {
15 "id": 0,
16 "articleNumber": "string",
17 "articleName": "string",
18 "articleBrand": "string",
19 "gtince": "string",
20 "gtinhe": "string",
21 "relationGln": "string",
22 "relationName": "string",
23 "relationArticleNumber": "string"
24 }
25]
26 }

Data Models

AssortmentDto (Output)

Representeert een complete assortimentslijst met alle metadata en items.

Structuur:

Velden:

Id: Unieke identifier van de assortimentslijst

Name: Naam van de assortimentslijst

AssortmentType: Type/categorie van het assortiment

Items: Lijst van artikelen in dit assortiment

AssortmentInsertDto (Input)

Voor het aanmaken van een nieuwe assortimentslijst.

Structuur:

Velden:

Id: Optionele GUID (wordt gegenereerd indien niet meegegeven)

Name: Naam van de assortimentslijst (verplicht)

AssortmentTypeId: ID van het assortimentstype (verplicht, > 0)

Items: Lijst van items om toe te voegen (optioneel)

AssortmentItemDto

Representeert een artikel binnen een assortimentslijst.

Structuur:

Velden:

Id: Interne item ID

ArticleNumber: Artikelnummer van de leverancier

ArticleName: Naam van het artikel

ArticleBrand: Merk van het artikel

GTINCE: GTIN van de consumer eenheid (EAN)

GTINHE: GTIN van de handelseenheid

1 public class AssortmentDto {
2 public Guid Id { get; set; }
3 public string Name { get; set; }
4 public AssortmentTypeDto AssortmentType { get; set; }
5 public List<AssortmentItemDto> Items { get; set; }
6 }

1 public class AssortmentInsertDto {
2 public Guid Id { get; set; }
3 public string Name { get; set; }
4 public int AssortmentTypeId { get; set; }
5 public List<AssortmentItemUpdateDto> Items { get; set; }
6 }

1 public class AssortmentItemDto {
2 public int Id { get; set; }
3 public string ArticleNumber { get; set; }
4 public string ArticleName { get; set; }
5 public string ArticleBrand { get; set; }
6 public string GTINCE { get; set; }
7 public string GTINHE { get; set; }
8 public string RelationGln { get; set; }
9 public string RelationName { get; set; }
10 public string RelationArticleNumber { get; set; }
11 }

RelationGln: GLN van de gerelateerde partij

RelationName: Naam van de gerelateerde partij

RelationArticleNumber: Artikelnummer bij de relatie

AssortmentTypeDto

Representeert een type/categorie assortiment met meertalige namen.

Structuur:

Velden:

Id: Unieke identifier van het type

Name: Lijst van vertalingen van de typenaam

Implementatie

Stappen voor implementatie:

1. Lijst samenstellen

Bepaal het type assortiment (AssortmentTypeId)

Verzamel artikelgegevens

Valideer verplichte velden

2. Lijst aanmaken

POST naar /v7/json/Assortment/assortments

Controleer beschikbaarheid van lijsten

Bewaar het gegenereerde ID

3. Items beheren

Voeg items toe via PUT /assortments/items

Verwijder items via DELETE /assortments/{id}/items

Update items door verwijderen en opnieuw toevoegen

4. Lijst opvragen

GET voor alle lijsten: /v7/json/Assortment/assortments

GET voor specifieke lijst: /v7/json/Assortment/assortments/{id}/items

5. Lijst verwijderen

DELETE voor volledige lijst: /v7/json/Assortment/assortment/{id}

Verwerking

Het systeem verwerkt de assortimentslijsten door:

1. Validatie

Controle op verplichte velden (Name, AssortmentTypeId)

Validatie van data types

Controle op beschikbare lijsten

2. Vergelijking met bestaande data

Identificatie van nieuwe artikelen

Matching met bestaande producten

Detectie van duplicaten

3. Relaties verwerken

1 public class AssortmentTypeDto {
2 public int Id { get; set; }
3 public List<TranslationDto> Name { get; set; }
4 }

Koppeling van artikelen aan relaties

Bijwerken van relatie-informatie

Synchronisatie met master data

4. Terugkoppeling

Success/error response codes

Gedetailleerde foutmeldingen

Logging van bewerkingen

Authenticatie & Autorisatie

Vereisten voor alle endpoints:

JWT Token in Authorization header

Rol: Read rol vereist

Token bevat: RelationId en UserId voor filtering

Token structuur:

De RelationId uit het token wordt gebruikt om:

Toegang te beperken tot eigen assortimenten

Aantal beschikbare lijsten te controleren

Data te filteren per relatie

Rate Limiting & Size Limits

POST en PUT endpoints:

Request size limit: 100 MB

Maakt grote bulk uploads mogelijk

Geschikt voor complete assortimentslijsten

Aanbevelingen:

Splits zeer grote lijsten (> 10.000 items) in meerdere batches

Implementeer error handling voor timeouts

Monitor response tijden

Gebruik Tips & Best Practices

Nieuwe lijst aanmaken:

1. Gebruik eerst POST om een lijst aan te maken

2. Bewaar het gegenereerde ID voor latere referentie

3. Valideer het response voor confirmatie

Items beheren:

1. Gebruik PUT om items incrementeel toe te voegen

2. Gebruik DELETE /items om specifieke items te verwijderen

3. Voor bulk updates: verwijder oude items en voeg nieuwe toe

Lijsten ophalen:

1. Gebruik GET zonder {id} voor overzicht van alle lijsten

2. Gebruik GET met {id} voor details van specifieke lijst

1 Authorization: Bearer <jwt-token>

3. Cache resultaten lokaal indien mogelijk

Lijst verwijderen:

1. Gebruik DELETE /{id} om de volledige lijst te verwijderen

2. Let op: dit is een permanente actie

3. Implementeer confirmatie in user interface

Foutafhandeling:

1. Implementeer retry logic voor netwerk fouten

2. Log error responses voor debugging

3. Valideer input data voor verzending

4. Check beschikbare lijsten voor aanmaken

Performance:

1. Batch items waar mogelijk (tot 100 MB)

2. Gebruik pagination voor grote lijsten

3. Implementeer caching van masterdata

4. Monitor API call frequentie

10. Webhooks

Overzicht

Webhooks bieden de mogelijkheid om real-time notificaties te ontvangen wanneer producten in uw assortimentslijst

worden gewijzigd. In plaats van periodiek de API te pollen voor updates, ontvangt u automatisch een push bericht

zodra er een wijziging plaatsvindt.

Hoe werkt het?

Wanneer een product uit uw assortimentslijst wordt geüpdatet, stuurt de Web API automatisch een POST request

naar uw geregistreerde webhook URL.

Webhook Endpoints

Subscribe - Aanmelden voor push berichten

Endpoint:

Beschrijving:

Registreer een webhook URL om notificaties te ontvangen bij productwijzigingen.

Parameters:

{format} : Responseformaat (json/xml)

Request Body:

Response Codes:

200 OK: Webhook succesvol geregistreerd

400 Bad Request: Ongeldige URL of request

1 POST /v7/{format}/Account/subscribe

1 {
2 "url": "https://uw-domein.nl/webhook/productupdate",
3 "secret": "uw-geheime-sleutel" // optioneel
4 }

401 Unauthorized: Niet geautoriseerd

Unsubscribe - Afmelden voor push berichten

Endpoint:

Beschrijving:

Verwijder de geregistreerde webhook URL om geen notificaties meer te ontvangen.

Parameters:

{format} : Responseformaat (json/xml)

Response Codes:

200 OK: Webhook succesvol verwijderd

400 Bad Request: Geen webhook geregistreerd

401 Unauthorized: Niet geautoriseerd

Webhook Payload

Wanneer een product in uw assortimentslijst wordt gewijzigd, ontvangt u een POST request op uw geregistreerde

webhook URL met de volgende payload:

Request Method: POST

Content-Type: application/json

Headers:

Body:

Gebruik van Secret

Wanneer u bij subscribe een secret opgeeft, wordt deze waarde in de x-secret header van elk push

bericht meegestuurd. Gebruik dit om de authenticiteit van inkomende webhook berichten te verifiëren.

Verwerking van Webhook Berichten

Na ontvangst van een webhook bericht kunt u de volledige productgegevens ophalen met het ontvangen

logisticid :

Stap 1: Ontvang webhook notificatie

Stap 2: Haal productgegevens op via de API

1 POST /v7/{format}/Account/unsubscribe

1 {
2 "x-secret": "uw-geheime-sleutel" // indien secret opgegeven bij

subscribe
3 }

1 {
2 "logisticid": 222

3 }

1 {
2 "logisticid": 222

3 }

1 GET
https://webapi.psinfoodservice.com/v7/json/productsheet/{logisticid}

2 Authorization: Bearer {your_accesstoken}

Implementatie Voorbeeld

Webhook Endpoint (C# / ASP.NET Core, an open-source web development framework | .NET Core)

Webhook Endpoint (Node.js / Express)

1 [ApiController]
2 [Route("webhook")]
3 public class WebhookController : ControllerBase

4 {
5 private readonly IProductService _productService;
6 private readonly ILogger<WebhookController> _logger;
7

8 public WebhookController(IProductService productService,
ILogger<WebhookController> logger)

9 {
10 _productService = productService;
11 _logger = logger;
12 }
13

14 [HttpPost("productupdate")]
15 public async Task<IActionResult> HandleProductUpdate([FromBody]

WebhookPayload payload)
16 {
17 // Valideer webhook secret
18 if (!ValidateWebhookSecret())
19 {
20 _logger.LogWarning("Webhook ontvangen met ongeldige

secret");
21 return Unauthorized();
22 }
23

24 _logger.LogInformation($"Webhook ontvangen voor logisticid:
{payload.LogisticId}");

25

26 try

27 {
28 // Haal de geüpdatete productgegevens op
29 var product = await

_productService.GetProductByIdAsync(payload.LogisticId);
30

31 // Verwerk de update in uw systeem
32 await _productService.ProcessProductUpdateAsync(product);
33

34 return Ok();
35 }
36 catch (Exception ex)
37 {
38 _logger.LogError(ex, $"Fout bij verwerken webhook voor

logisticid: {payload.LogisticId}");
39 return StatusCode(500);
40 }
41 }
42

43 private bool ValidateWebhookSecret()
44 {
45 // Haal de verwachte secret op uit configuratie
46 var expectedSecret = _configuration["Webhook:Secret"];
47

48 if (string.IsNullOrEmpty(expectedSecret))
49 {
50 _logger.LogWarning("Geen webhook secret geconfigureerd");
51 return true; // Optioneel: sta requests toe als geen

secret is geconfigureerd
52 }
53

54 // Haal de secret uit de header
55 if (!Request.Headers.TryGetValue("x-secret", out var

receivedSecret))
56 {
57 return false;
58 }
59

60 // Vergelijk secrets (gebruik constant-time vergelijking voor
beveiliging)

61 return CryptographicOperations.FixedTimeEquals(
62 Encoding.UTF8.GetBytes(expectedSecret),
63 Encoding.UTF8.GetBytes(receivedSecret.ToString())
64);
65 }
66 }
67

68 public class WebhookPayload

69 {
70 public int LogisticId { get; set; }
71 }

1 const express = require('express');

http://asp.net/
http://asp.net/

2 const crypto = require('crypto');
3 const app = express();
4

5 app.use(express.json());
6

7 // Configuratie
8 const WEBHOOK_SECRET = process.env.WEBHOOK_SECRET || 'uw-geheime-

sleutel';
9 const ACCESS_TOKEN = process.env.ACCESS_TOKEN;
10

11 // Middleware voor webhook secret verificatie
12 function validateWebhookSecret(req, res, next) {
13 const receivedSecret = req.headers['x-secret'];
14

15 if (!WEBHOOK_SECRET) {
16 console.warn('Geen webhook secret geconfigureerd');
17 return next(); // Optioneel: sta requests toe als geen secret

is geconfigureerd
18 }
19

20 if (!receivedSecret) {
21 console.warn('Webhook ontvangen zonder secret header');
22 return res.status(401).send('Unauthorized');
23 }
24

25 // Gebruik constant-time vergelijking voor beveiliging
26 const expectedBuffer = Buffer.from(WEBHOOK_SECRET);
27 const receivedBuffer = Buffer.from(receivedSecret);
28

29 if (expectedBuffer.length !== receivedBuffer.length ||
30 !crypto.timingSafeEqual(expectedBuffer, receivedBuffer)) {
31 console.warn('Webhook ontvangen met ongeldige secret');
32 return res.status(401).send('Unauthorized');
33 }
34

35 next();
36 }
37

38 app.post('/webhook/productupdate', validateWebhookSecret, async (req,
res) => {

39 const { logisticid } = req.body;
40

41 console.log(`Webhook ontvangen voor logisticid: ${logisticid}`);
42

43 try {
44 // Haal de geüpdatete productgegevens op via de API
45 const productResponse = await fetch(
46

`https://webapi.psinfoodservice.com/v7/json/productsheet/${logisticid}
`,

47 {
48 headers: {
49 'Authorization': `Bearer ${ACCESS_TOKEN}`,
50 'Content-Type': 'application/json'
51 }
52 }
53);
54

55 if (!productResponse.ok) {
56 throw new Error(`API error: ${productResponse.status}`);
57 }
58

59 const productData = await productResponse.json();
60

61 // Verwerk de update in uw systeem
62 await processProductUpdate(productData);
63

64 res.status(200).send('OK');
65 } catch (error) {
66 console.error(`Fout bij verwerken webhook: ${error.message}`);
67 res.status(500).send('Error');
68 }
69 });
70

71 app.listen(3000, () => {
72 console.log('Webhook server draait op poort 3000');
73 });
74

75 async function processProductUpdate(productData) {
76 // Implementeer hier uw eigen logica
77 console.log('Product update verwerken:', productData);
78 }
79 ```
80

81 **Environment variables (.env bestand):**
82 ```
83 WEBHOOK_SECRET=uw-geheime-sleutel
84 ACCESS_TOKEN=uw-access-token

Best Practices voor Webhooks

1. Beveiliging

Gebruik HTTPS voor uw webhook endpoint

Valideer binnenkomende requests

Implementeer rate limiting op uw endpoint

2. Betrouwbaarheid

Retourneer snel een 200 OK response

Verwerk de daadwerkelijke update asynchroon

Implementeer een queue voor binnenkomende webhooks

3. Foutafhandeling

Log alle binnenkomende webhook requests

Implementeer retry logic bij mislukte API calls

Monitor uw webhook endpoint voor fouten

4. Idempotentie

Ontwerp uw verwerking idempotent (dezelfde update meerdere keren verwerken geeft hetzelfde resultaat)

Houd bij welke updates al verwerkt zijn

5. Timeout Handling

Reageer binnen 30 seconden op webhook requests

Gebruik background processing voor langdurige operaties

11. Error Handling

HTTP Status Codes

Foutmeldingen

Foutmeldingen bevatten:

Unieke foutcode

200 OK Succesvolle operatie

204 No Content Geen data gevonden

400 Bad Request Ongeldige aanvraag of

parameters

401 Unauthorized Niet geautoriseerd,

token

ontbreekt/ongeldig

403 Forbidden Toegang geweigerd,

onvoldoende rechten

404 Not Found Resource niet

gevonden

409 Conflict Conflict met bestaande

data

500 Internal Server Error Server fout

Code Betekenis Wanneer

Beschrijvende melding in duidelijke taal

Aanvullende details over de fout

Logging referentie voor support

Voorbeeld error response:

Troubleshooting

Veel voorkomende problemen:

1. Connectie problemen

Controleer netwerk connectiviteit

Verificeer SSL/TLS configuratie

Check firewall settings

Test met ping/traceroute

2. Authenticatie problemen

Controleer API key/token validiteit

Verificeer verlopen credentials

Check IP whitelist settings

Valideer gebruikersrechten

3. Validatie fouten

Controleer verplichte velden

Valideer data types

Check data formaat (JSON/XML)

Verify character encoding

4. Rate limiting

Monitor aantal API calls

Implementeer backoff strategie

Gebruik caching waar mogelijk

Optimaliseer batch sizes

12. Best Practices

Implementatie Richtlijnen

1. Gebruik de juiste endpoints

Kies het juiste HTTP method (GET/POST/PUT/DELETE)

Gebruik correcte URL structuur

Specificeer gewenst format (json/xml)

2. Implementeer error handling

Try-catch blokken

Retry logic voor netwerk fouten

Logging van errors

1 {
2 "error": "ValidationError",
3 "message": "Geen assortimentslijst met de Id {guid} gevonden.",
4 "statusCode": 409,
5 "timestamp": "2024-01-15T10:30:00Z"
6 }

User-friendly foutmeldingen

3. Valideer input data

Client-side validatie

Controleer verplichte velden

Valideer data types

Sanitize user input

4. Monitor performance

Track response tijden

Log API call volume

Monitor error rates

Set up alerts

5. Documenteer aanpassingen

Code comments

API documentatie

Change logs

Version control

Performance Optimalisatie

1. Implementeer caching

Cache masterdata lokaal

Use HTTP caching headers

Implementeer client-side cache

Set appropriate TTL

2. Beperk aantal aanroepen

Batch requests waar mogelijk

Gebruik pagination

Filter data server-side

Minimize payload size

3. Optimaliseer dataverkeer

Gebruik compressie (gzip)

Minimaliseer response data

Select only needed fields

Use efficient data formats

4. Monitor response tijden

Set performance baselines

Track trends over time

Identify bottlenecks

Optimize slow endpoints

Caching Strategieën

Master data caching:

Cache duration: 24 uur

Update trigger: versie controle

Invalidatie: op nieuwe versie

Product data caching:

Cache duration: 1-4 uur

Update trigger: timestamp controle

Invalidatie: op change detection

Token management:

Refresh voor expiratie

Secure storage

Auto-renewal

Error recovery

Cache invalidatie:

Time-based (TTL)

Event-based (updates)

Manual (force refresh)

Version-based (API updates)

13. Ondersteuning

Contact Informatie

Email technische vragen:

Email commerciële vragen:

Telefoon: +31 085 044 18 96

Support tijden:

Maandag t/m vrijdag: 09:00 - 17:00 CET

Spoed support: via e-mail

FAQ

Veel gestelde vragen en antwoorden zijn beschikbaar op de support website.

Veelgestelde onderwerpen:

Authenticatie problemen

Rate limiting

Data formaat vragen

Implementatie tips

Error handling

Aanvullende Bronnen

Swagger documentatie:

Beschikbare resources:

Postman collectie voor testing

Code voorbeelden (C#, PHP, Python)

Implementatie guides

ict@psinfoodservice.com

info@psinfoodservice.com

Swagger UI

mailto:ict@psinfoodservice.com
mailto:info@psinfoodservice.com
https://webapi.psinfoodservice.com/swagger/index.html

Appendix

Glossary

Laatste update: Jan, 2026

Documentatie versie: 1.1.0

API versie: 7.0.0.1

JWT JSON Web Token - authenticatie

token formaat

GTIN Global Trade Item Number -

product identificatie

GLN Global Location Number - locatie

identificatie

EAN European Article Number - barcode

standaard

TTL Time To Live - cache

geldigheidsduur

DTO Data Transfer Object - data

transport model

Term Definitie

